Studying tuberculosis with a zebrafish model

  • May 12, 2019
Studying tuberculosis with a zebrafish model

As one of the oldest known human infectious diseases, tuberculosis (TB) is still an enormous global problem. It caused an estimated 1.3 million deaths and 10 million new infection cases in 2017, according to WHO 2018 figures. Despite the fact that we have found the effective antibiotics for it since the 1960s. And the regimen that was developed in 1960s is still used today to treat TB. Now there’s an emergence of drug resistant TB. It is a very serious problem because drug resistant TB, especially extensively drug resistant TB, makes TB once again the lethal disease than it was in the pre-antibiotic era. What’s worse, the TB vaccine (BCG) that was discovered in the 1920s offers only limited protection against TB. TB recently surpassed HIV as one of the leading 10 causes of death worldwide and it only results from a single agent, the bacterium called Mycobacterium tuberculosis (Mtb).

So what should we do in the face of falling drugs and an ineffective TB vaccine? One way to tackle it is to go back and look at the basic pathogenesis of the disease and see what we can target. My supervisor, Professor Lalita Ramakrishnan, previously helped to develop the genetically tractable and optically transparent zebrafish-Mycobacterium marinum (Mm) model to study these various phases during TB pathogenesis.

In a disease like TB, you’ve got two players: the bacterium and the host. The goal is to develop a much deeper understanding of the tricks that the bacterium uses to establish itself in the host and to produce disease. Mycobacterium marinum causes TB in fish. It is a very close bacterial relative of the human TB bacterium and is much easier and safer to work with. When you look at the pathology of the fish disease, it looks very similar to what human TB bacteria produces in humans.

We use the zebrafish as a host model organism and people call it a “living laboratory”. Zebrafish have a zebra pattern and are very tiny. The zebrafish baby could fit into just half the length of the Queen's crown on a one pence coin. Moreover, the adult fish is only about 4cm in length. However, with the help of powerful microscopy, the zebrafish is now a very important model used to study diseases in vivo. For the first two to three weeks it is optically transparent so we can follow the fate of individual host immune cells and individual bacterium to see where they are going and what they are doing, without hurting the fish. It sounds simple, but its power has been extraordinary. From a bacterial point of view, we have found completely new ways that bacteria develop to manipulate the host's immune system. And from the host aspect, we’ve found genetic mutations that confer susceptibility, or even resistance, to bacterial infection.

For example, by doing forward genetic screening, our lab found a genetic allele, LTA4H, that regulates the severity of fish tuberculosis, and this regulation is proved to be the same in clinical TB infection of patients with LTA4H single nucleotide polymorphism (SNP). Too little or too much LTA4H both cause severe TB, whereas a middling amount causes the least severe TB. This finding also predicts the effectiveness of a widely used clinical TB treatment. People have used dexamethasone as an anti-inflammatory adjuvant to antibiotic TB treatment for many years. It has improved the survival rate of LTA4H high people, but LTA4H low people have been harmed by the treatment. This has just been verified in a repeat study and now there is a trial going on to show that dexamethasone is harmful for those with low inflammatory genotypes. So the zebrafish model may also contribute to a personalised medicine approach.

I have also found a zebrafish mutant that is resistant to mycobacterial infection. By studying its molecular mechanism, I hope to provide new ideas, from the host point of view, for the treatment of TB, including multidrug-resistant TB.

Last but not the least, it’s also critically important that our fish are treated wonderfully. We couldn’t have made the discoveries that we’ve made without these fish!

*Jingwen Fan [2017] is doing a PhD in Medicine. She presented her research at this year's Gates Cambridge Day of Research, for which she won Best Microtalk. Photo of bacteria fighting with immune cells supplied by Jingwen Fan.

Jingwen (Alice) Fan

Jingwen (Alice) Fan

  • Alumni
  • China
  • 2017 PhD Medicine
  • Emmanuel College

Growing up in a developing country, I was deeply impressed by how science and technology have improved the quality of people’s life. On the other hand, as I was volunteering in science education in remote villages, I also realized education and medical care are distributed unequally in some undeveloped regions. With my ultimate goal of making everyone around the world have equal right to basic medical care, I was determined to become a medical scientist and to develop useful and affordable therapies to improve people’s lives. I am excited and honoured to be joining the Gates Cambridge community for my PhD after my undergraduate study in Xiamen University, China. During my PhD in Professor Lalita Ramakrishnan’s lab, I will work on improving and possibly discovering new therapies for tuberculosis infection. As one of the oldest known human infectious diseases, tuberculosis continues being a leading cause of death from infectious diseases. It caused about 1.3 million deaths and 10.4 million infection cases in 2016 (WHO 2017). Nowadays, the rapid increase of multidrug-resistant tuberculosis strains is the main challenge in the battle against this disease. I will mainly focus on host innate immune reactions against bacterial infection. By targeting on the key molecules and pathways in host immune system, I hope to provide new ideas in the treatment of tuberculosis, including multidrug-resistant tuberculosis.

Previous Education

Xiamen University

Latest Blogs

How Cambridge Analytica influenced Nigeria’s elections

My research broadly tackles questions of technology, equity, and accountability within the Global South. I emphasise the West’s use of sub-Saharan Africa as a testing ground or laboratory for its nascent technologies before launching them in the West. This blog is an excerpt from my recent presentation at the 2022 Gates Day of Research, titled […]

Why algorithms are necessarily value-laden

Algorithmic decision-making systems applied in social contexts drape value-laden solutions in an illusory veil of objectivity. Machine learning plays an increasingly prominent role in mediating institutional decisions in everything from corporate hiring practices to criminal sentencing. This ongoing AI spring has invigorated discussions of the ethical dimensions of these techno-social arrangements. In particular, there is […]

Preparing for all scenarios in an unstable world

On March 9th, Mohamed A. El-Erian joined the Gates Cambridge community for a virtual fireside chat, where he discussed decision-making in conditions of uncertainty, the economic impact of the pandemic and relief efforts and the importance of diversity of thought and scenario planning. El-Erian is President of Queens’ College, Cambridge and Chief Economic Advisor of […]

How can the international community help Belarus?

Last Sunday represented a tipping point in the recent history of Belarus which has had an immediate effect on the lives of its citizens, including mine. Independent exit polls and observers representing the diplomatic community, verified by the crowdsourcing platform Golos, show that, had it been a fair and transparent election, the uninterrupted, 26-year-long reign […]