Understanding protein dynamics

  • January 15, 2018
Understanding protein dynamics

Proteins are so small that they cannot be directly observed. Furthermore, protein dynamics occur too quickly to perceive, even if we could observe them. Experimental methods for monitoring protein motion often produce very coarse representations of just a few moving parts. Thus, many researchers have sought to model protein dynamics using computer simulations, which enable researchers to "see" every atom in a protein move at very short (picosecond!) timescales.

In order to make robust conclusions, it is necessary to interpret such simulations in a statistical manner, instead of simply watching what happens. My PhD research focuses on building statistically rigorous protein dynamics simulations in order to model and understand what a protein is doing when it moves.

The type of model I use is called a Markov state model, which assigns to a state every frame in the simulation (like frames in a movie reel). We typically have millions of frames and automatically assign each frame to one of a few hundred states. Thus, we can analyse states in terms of their populations, the probabilities of transitioning between them and the possible pathways from any state to any other state. These quantities correspond to scientific variables of interest such as energy, kinetic rates and transition pathways.

By creating Markov state models for simulations of protein dynamics, we can better understand biophysical processes, for example, (1) how proteins fold and misfold, the latter being implicated in various diseases; (2) how folded proteins change conformation, which might reveal new stable structures that we can propose small molecule drugs to stabilise or destabilise; and (3) how and where small molecules bind and unbind to a protein, which yields information about how drugs interact with the protein to which they bind.

While many of my colleagues focus on modeling specific systems with medical applications, such as opioid receptors for pain management applications and kinases for cancer research, my PhD research centres on developing the models themselves from a mathematical viewpoint in order to enhance the research of my colleagues. For example, I have recently developed an algorithm to address the challenging problem of reducing a hundred-state model to a two- or three-state model, which is useful for interpreting models as well as recognising what is most important in the system.

Over the past two decades since Markov state models were proposed for studying the dynamics of molecules, there have been many mathematical improvements to the method, but there was no single place that all 20 years of advances were presented for a general scientific audience. Therefore, after reading about 400 journal publications, I recently wrote a perspective review for The Journal of the American Chemical Society summarising the developments of the method. My aim was to explain and promote the growth of the subfield and to present the most recent discoveries it has enabled as well as future directions researchers should pursue.

Ultimately, one of my goals as a scientist is to communicate complex ideas in an accessible way that enables non-experts to adapt the strategies and algorithms that many researchers (including myself) have worked so hard to develop. By developing algorithms designed with interpretability in mind, and by publishing perspective articles communicating new methods for a general scientific audience, I seek to make progress towards this goal.

*Brooke Husic did an MPhil in Chemistry at the University of Cambridge and is now pursuing a PhD at Stanford.

Brooke Elena Husic

Brooke Elena Husic

  • Alumni
  • United States
  • 2014 MPhil Chemistry
  • Churchill College

I grew up in Glastonbury, Connecticut and graduated from Washington University in St. Louis in 2013 where I studied chemistry, mathematics, and German as well as published in theoretical phonology. After earning my MPhil in 2015 with support from Gates Cambridge, I moved to Stanford where I completed my doctorate in Chemistry in 2019. I'm now working as a postdoctoral fellow in Berlin where I'm continuing my computational chemistry and machine learning work on molecular kinetics.

Previous Education

Washington University in St. Louis A.B. Chemistry, Mathematics, German 2013

Latest Blogs

How Cambridge Analytica influenced Nigeria’s elections

My research broadly tackles questions of technology, equity, and accountability within the Global South. I emphasise the West’s use of sub-Saharan Africa as a testing ground or laboratory for its nascent technologies before launching them in the West. This blog is an excerpt from my recent presentation at the 2022 Gates Day of Research, titled […]

Why algorithms are necessarily value-laden

Algorithmic decision-making systems applied in social contexts drape value-laden solutions in an illusory veil of objectivity. Machine learning plays an increasingly prominent role in mediating institutional decisions in everything from corporate hiring practices to criminal sentencing. This ongoing AI spring has invigorated discussions of the ethical dimensions of these techno-social arrangements. In particular, there is […]

Preparing for all scenarios in an unstable world

On March 9th, Mohamed A. El-Erian joined the Gates Cambridge community for a virtual fireside chat, where he discussed decision-making in conditions of uncertainty, the economic impact of the pandemic and relief efforts and the importance of diversity of thought and scenario planning. El-Erian is President of Queens’ College, Cambridge and Chief Economic Advisor of […]

How can the international community help Belarus?

Last Sunday represented a tipping point in the recent history of Belarus which has had an immediate effect on the lives of its citizens, including mine. Independent exit polls and observers representing the diplomatic community, verified by the crowdsourcing platform Golos, show that, had it been a fair and transparent election, the uninterrupted, 26-year-long reign […]