Building on nature’s complex architecture

  • June 6, 2014
Building on nature’s complex architecture

New techniques that contribute to humans' ability to create complex synthetic matter have been developed by scientists at the University of Cambridge.

New techniques that contribute to humans’ ability to create complex synthetic matter have been developed by scientists at the University of Cambridge.

Research on these new techniques, led by Derrick Roberts [2012] and based on his PhD research which focuses on ways to synthetically emulate the building blocks of life in order to engineer new materials for applications in nanotechnology, is published in the current edition of the Journal of the American Chemical Society.

Derrick, who is undertaking a PhD in Chemistry under the supervision of Dr Jonathan Nitschke, says: “Nature relies on the hierarchical self-assembly of atoms and molecules to produce the exquisite biological machinery that underpins life as we know it: peptide chains fold up into highly complex proteins, single-stranded DNA associates to form the well-known double helix, and lipids self-organise into the membranes that define the boundaries of cells. A central focus of our research is to employ the principles of molecular self-assembly to control how molecules can interact with each other to make larger assemblies to the order of several nanometers.

“Deciphering the rules that govern self-assembly will shape the future of chemical synthesis, allowing chemists to produce highly complex molecular architectures with little synthetic effort (ideally, the architectures build themselves). If designed carefully, these architectures will exhibit properties useful to drug delivery, solar energy conversion, nanoelectronics, pollutant sensing and chemical hazard mitigation.”

In most self-assembling systems, the final product is typically the most energetically stable structure. In some instances, however, the most stable structure is not the desired outcome; instead, one might wish to target an unusual, less-stable structure as it may have interesting properties for one of the aforementioned applications. Derrick’s research examines methods for trapping a self-assembling system at a less stable structure.

Derrick states: “Our study proposes a powerful concept for controlling the outcome of a self-assembly reaction by circumventing the natural energetic preferences of the self-assembling system. As such, these techniques contribute to the growing synthetic “toolbox”, which continues to offer ever more powerful means of building nanotechnology through molecular self-assembly.”

Picture credit: www.freedigitalphotos.net. and dream designs.

Latest News

The process of history-making

Olin Moctezuma-Burns [2020] is keen not to repeat the patterns of some past researchers and to give back to the communities she studies. For that reason she recently co-organised an international gathering of Imagining Futures projects on archiving indigenous and traditional knowledges in Sotuta, Yucatan. The meeting brought together people from Colombia, Peru, Kenya, Tanzania, […]

How might extreme heat contribute to human migration?

Rising temperatures due to climate change are likely influencing human migration patterns, according to a new study co-authored by Gates Cambridge Scholar Dr Kim van Daalen [2018]. The study, led by Rita Issa of University College London, is published today in the open-access journal PLOS Climate. It looks at the role of heat in human […]

Scholar scoops prestigious science innovation fellowship

Freja Ekman has been named one of the 2023 class of Hertz Fellows as the prestigious fellowship celebrates its 60th year. The 15 fellowships in applied science, engineering and mathematics are awarded by Fannie and John Hertz Foundation, a non-profit organisation for innovators in science and technology. Winners will have their graduate studies funded for […]

Scholar hosts first UN communications technology access meeting in India

Gates Cambridge Scholar Pradipta Biswas has hosted a UN meeting on improving access to communications technology – the first ever held in India. The meeting of ITU-T Study Group 9 (SG-9) on “Broadband Cable and Television/Audiovisual content transmission and integrated broadband cable networks”  was held in May at the Indian Institute of Science in Bengaluru […]