Building on nature’s complex architecture

  • June 6, 2014
Building on nature’s complex architecture

New techniques that contribute to humans' ability to create complex synthetic matter have been developed by scientists at the University of Cambridge.

New techniques that contribute to humans’ ability to create complex synthetic matter have been developed by scientists at the University of Cambridge.

Research on these new techniques, led by Derrick Roberts [2012] and based on his PhD research which focuses on ways to synthetically emulate the building blocks of life in order to engineer new materials for applications in nanotechnology, is published in the current edition of the Journal of the American Chemical Society.

Derrick, who is undertaking a PhD in Chemistry under the supervision of Dr Jonathan Nitschke, says: “Nature relies on the hierarchical self-assembly of atoms and molecules to produce the exquisite biological machinery that underpins life as we know it: peptide chains fold up into highly complex proteins, single-stranded DNA associates to form the well-known double helix, and lipids self-organise into the membranes that define the boundaries of cells. A central focus of our research is to employ the principles of molecular self-assembly to control how molecules can interact with each other to make larger assemblies to the order of several nanometers.

“Deciphering the rules that govern self-assembly will shape the future of chemical synthesis, allowing chemists to produce highly complex molecular architectures with little synthetic effort (ideally, the architectures build themselves). If designed carefully, these architectures will exhibit properties useful to drug delivery, solar energy conversion, nanoelectronics, pollutant sensing and chemical hazard mitigation.”

In most self-assembling systems, the final product is typically the most energetically stable structure. In some instances, however, the most stable structure is not the desired outcome; instead, one might wish to target an unusual, less-stable structure as it may have interesting properties for one of the aforementioned applications. Derrick’s research examines methods for trapping a self-assembling system at a less stable structure.

Derrick states: “Our study proposes a powerful concept for controlling the outcome of a self-assembly reaction by circumventing the natural energetic preferences of the self-assembling system. As such, these techniques contribute to the growing synthetic “toolbox”, which continues to offer ever more powerful means of building nanotechnology through molecular self-assembly.”

Picture credit: www.freedigitalphotos.net. and dream designs.

Latest News

Rainforest carbon credit schemes less effective than thought, claims report

The effectiveness of widely used rainforest carbon credit schemes has been called into question by a new study. The study, Reducing Emissions from Deforestation and Forest Degradation (REDD+) Carbon Crediting,  by the Berkeley Carbon Trading Project is co-authored by Gates Cambridge Scholar Libby Blanchard [2012] and has been making headlines around the world. It brings […]

Gates Cambridge Trust seeks Global Engagement Officer

About us  Gates Cambridge Scholarships are prestigious, highly competitive, full-cost scholarships awarded to outstanding applicants from countries outside the UK to pursue a full-time postgraduate degree in any subject available at the University of Cambridge. Gates Cambridge Scholars become part of a lifelong global community defined by its core value of commitment to improving the […]

How combining clinical data could improve traumatic brain injury outcomes

Researchers, led by a Gates Cambridge Scholar, have integrated all medical data collected from traumatic brain injury (TBI) patients to calculate, for the first time, the personalised contribution of each clinical event to long-term recovery. This international effort marks a step towards patient-centred treatment in the intensive care unit (ICU). Shubhayu Bhattacharyay [2020] is the lead […]

Building a more sustainable future

When Alejandro Rivera Rivera [2015] was doing his MPhil in Engineering for Sustainable Development at Cambridge, a key theme was dealing with complexity, change and uncertainty. The course gave him some tools to cope, but he could never have imagined how useful these would come in when he returned to Guatemala and co-founded a business […]