Building on nature’s complex architecture

  • June 6, 2014
Building on nature’s complex architecture

New techniques that contribute to humans' ability to create complex synthetic matter have been developed by scientists at the University of Cambridge.

New techniques that contribute to humans’ ability to create complex synthetic matter have been developed by scientists at the University of Cambridge.

Research on these new techniques, led by Derrick Roberts [2012] and based on his PhD research which focuses on ways to synthetically emulate the building blocks of life in order to engineer new materials for applications in nanotechnology, is published in the current edition of the Journal of the American Chemical Society.

Derrick, who is undertaking a PhD in Chemistry under the supervision of Dr Jonathan Nitschke, says: “Nature relies on the hierarchical self-assembly of atoms and molecules to produce the exquisite biological machinery that underpins life as we know it: peptide chains fold up into highly complex proteins, single-stranded DNA associates to form the well-known double helix, and lipids self-organise into the membranes that define the boundaries of cells. A central focus of our research is to employ the principles of molecular self-assembly to control how molecules can interact with each other to make larger assemblies to the order of several nanometers.

“Deciphering the rules that govern self-assembly will shape the future of chemical synthesis, allowing chemists to produce highly complex molecular architectures with little synthetic effort (ideally, the architectures build themselves). If designed carefully, these architectures will exhibit properties useful to drug delivery, solar energy conversion, nanoelectronics, pollutant sensing and chemical hazard mitigation.”

In most self-assembling systems, the final product is typically the most energetically stable structure. In some instances, however, the most stable structure is not the desired outcome; instead, one might wish to target an unusual, less-stable structure as it may have interesting properties for one of the aforementioned applications. Derrick’s research examines methods for trapping a self-assembling system at a less stable structure.

Derrick states: “Our study proposes a powerful concept for controlling the outcome of a self-assembly reaction by circumventing the natural energetic preferences of the self-assembling system. As such, these techniques contribute to the growing synthetic “toolbox”, which continues to offer ever more powerful means of building nanotechnology through molecular self-assembly.”

Picture credit: and dream designs.

Latest News

Tracing the origins of our political beliefs

What makes some people more vulnerable to extremism than others? How do we build cognitive resilience against extreme ideologies? And how does the brain react to misinformation on social media? These are some of the key political questions that political neuroscientist Leor Zmigrod [2016] is exploring, putting the science into our understanding of radicalisation.   Leor […]

A leading woman in STEAM

A Gates Cambridge Scholar has been selected as one of the 75 leading women in Science, Technology, Engineering, Arts and Mathematics in India. Yama Dixit will feature in the second edition of the book She Is, published by the Red Dot Foundation in partnership with the Office of the Principal Scientific Adviser, Government of India to mark 75 […]

Tackling the obesity epidemic in Africa

When she left school, Paula-Peace James-Okoro [2022] intended to become a medical doctor, but after starting a degree in Biochemistry she discovered a passion for the subject and for using it to address one of the major health challenges facing Africa – obesity. She says: “In Africa, the rates of metabolic diseases, like obesity and […]

Triple win for Bill Gates Sr. Prize

For the first time three Gates Cambridge Scholars are sharing this year’s Bill Gates Sr. Prize in recognition of their outstanding research and social leadership. Kim van Daalen, Reetika Subramanian and Cynthia Okoye have been selected for the prize which was established by the Gates Cambridge Trustees in June 2012 in recognition of the late […]