Mutating proteins

  • July 25, 2012
Mutating proteins

A paper co-authored by Gates Scholar Guilhem Chalancon shows how bioinformatics approaches can shed new light on the way our bodies produce proteins, which could help design therapeutic strategies for tissue-specific diseases such as cancer.

Scientists have used bioinformatics approaches to shed new light on the way our bodies produce proteins, which could help design therapeutic strategies for tissue-specific diseases such as cancer.

Next-Generation Sequencing technologies have enabled researchers to discover that most human genes are alternatively spliced, a mechanism that allows our genes to produce multiple versions of a protein while starting from a single DNA sequence.  This means the total number of different proteins expressed in our body exceeds by far the over 25,000 produced by our genome.

Very recent studies shed light on the importance of some of these protein versions that are only expressed in certain tissues of our body. One of the studies, co-authored by Gates Cambridge Scholar Guilhem Chalancon, is published in the prestigious journal Molecular Cell and has been featured on the MRC LMB website and in Nature Reviews in Genetics.

The researchers found that tissue-specific alternative splicing not only results in multiple versions of human proteins, but also impacts on the way they interact with each other. Moreover, researchers found that genes that undergo tissue-specific alternative splicing have often mutated in different cancer types.

The researchers used bioinformatics to mine publicly available data. Guilhem [2011], who is doing a PhD in Biological Science at the MRC Laboratory for Molecular Biology, says: “This approach allowed us to pinpoint biological evidence that would be very challenging to characterise otherwise.”

More importantly, he says, it may lead to clinical implications in the future. “Tracking mutations in these portions of genes that are tissue-specific may help to understand better tissue-specific diseases such as cancer and could guide drug development for such diseases,” he says.

More information

Picture credit: Dream designs and www.freedigitalphotos.net

Latest News

Gut bacteria links to immune responses in the brain

Bugs in the gut may hold the key to protective immune measures in the brain which could have implications for diseases such as Parkinson’s and multiple sclerosis, according to a new study led by Gates Cambridge Scholar Zachary Fitzpatrick. A paper based on his PhD research has recently been published in Nature and it highlights […]

Exploring the social barriers to take-up of green technology

How can rural communities be encouraged to take up green energy solutions? A new study co-authored by Gates Cambridge Scholar Ramit Debnath investigates the social barriers to uptake of household appliances fuelled by green energy. Based on research on more than 14.5K households in rural communities in Rwanda, the study, published in Renewable Energy, found […]

A new technique to decode the way the nervous system works

How do the billions of neurons in the human brain work together to give rise to thought or certain types of behaviour? A new study led by Gates Cambridge Alumnus Eviatar Yemini [2007] outlines a colouring technique, known as NeuroPAL (a Neuronal Polychromatic Atlas of Landmarks), which makes it possible – at least in experiments […]

An innovative approach to plant protection

Shauna-Lee Chai is passionate about working on wicked problems, about using her entrepreneurial skills to improve the lives of others and about seeing the big picture, something she says her experience as a Gates Cambridge Scholar contributed to. Her expertise is in invasive plant species and for three years she was Board Director of the […]