Mutating proteins

  • July 25, 2012
Mutating proteins

A paper co-authored by Gates Scholar Guilhem Chalancon shows how bioinformatics approaches can shed new light on the way our bodies produce proteins, which could help design therapeutic strategies for tissue-specific diseases such as cancer.

Scientists have used bioinformatics approaches to shed new light on the way our bodies produce proteins, which could help design therapeutic strategies for tissue-specific diseases such as cancer.

Next-Generation Sequencing technologies have enabled researchers to discover that most human genes are alternatively spliced, a mechanism that allows our genes to produce multiple versions of a protein while starting from a single DNA sequence.  This means the total number of different proteins expressed in our body exceeds by far the over 25,000 produced by our genome.

Very recent studies shed light on the importance of some of these protein versions that are only expressed in certain tissues of our body. One of the studies, co-authored by Gates Cambridge Scholar Guilhem Chalancon, is published in the prestigious journal Molecular Cell and has been featured on the MRC LMB website and in Nature Reviews in Genetics.

The researchers found that tissue-specific alternative splicing not only results in multiple versions of human proteins, but also impacts on the way they interact with each other. Moreover, researchers found that genes that undergo tissue-specific alternative splicing have often mutated in different cancer types.

The researchers used bioinformatics to mine publicly available data. Guilhem [2011], who is doing a PhD in Biological Science at the MRC Laboratory for Molecular Biology, says: “This approach allowed us to pinpoint biological evidence that would be very challenging to characterise otherwise.”

More importantly, he says, it may lead to clinical implications in the future. “Tracking mutations in these portions of genes that are tissue-specific may help to understand better tissue-specific diseases such as cancer and could guide drug development for such diseases,” he says.

More information

Picture credit: Dream designs and www.freedigitalphotos.net

Latest News

Book celebrates 50th anniversary of Cambridge’s Genizah Research Unit

This October sees the publication of the first illustrated introduction to the unique collections of Cairo Genizah manuscripts at Cambridge University Library, revealing the forgotten stories of Jewish, Muslim and Christian communities at the centre of a millennium of world history. The coffee table book, co-authored by Gates Cambridge Scholar Nick Posegay [2017] and Melonie Schmierer-Lee, […]

25 for 25

The Gates Cambridge Trust will be celebrating its 25th anniversary in 2025 by offering an additional 25 postgraduate scholarships for our Class of 2025. The 25th anniversary celebrations start next year and will kick off with our Impact Prize ceremony in January which will highlight the far-reaching impact of existiung Gates Cambridge Scholars and look […]

Gates Cambridge Impact Prize launched

Nominations for the Gates Cambridge Impact Prize 2025 open today [15th August] in celebration of the Scholarship’s 25th anniversary celebrations. Five award winners will receive £5,000 and be invited to participate in our 2025 anniversary events to highlight the impact their work has had on society. The prize defines impact as a demonstrable contribution to change in various fields, including the […]

How can we improve healthcare for all?

Three Gates Cambridge Scholars discuss various ways to improve healthcare for all in the final episode of the first series of the So, now what? Podcast. Victor Roy, Johanna Riha and Sabrina Anjara focus on issues such as gender inequities, mental health and access to medicine.  They emphasise the importance of investing in women’s health […]