STEM for Britain

  • February 1, 2018
STEM for Britain

Michelle Teplensky has been selected for STEM for Britain and will display a poster in the House of Commons.

Gates Cambridge Scholar Michelle Teplensky has been selected for a prestigious event which will see a poster of her research displayed in the UK Parliament. 

Michelle [2014] was chosen for STEM for BRITAIN which aims to encourage, support and promote Britain's early-stage and early-career research scientists, engineers, technologists and mathematicians.  It gives scientists the chance to go to Parliament and be in the company of MPs, policymakers and key figures from the world of science policy, as well as other young researchers from around the country. There are also cash prizes available for the best posters in each discipline and there is an overall medal for the best communication of science at the event.

Michelle's poster will be displayed at the House of Commons on Monday 12th March in the Physical Sciences (Chemistry) Session. She is doing a PhD in Chemical Engineering, working in the Adsorption and Advanced Materials Group, supervised by Dr David Fairen-Jimenez.

Michelle's poster will be titled Metal-Organic Frameworks as a Tool for Therapeutic Delivery. Metal-organic frameworks (MOFs) are porous and self-assembling materials currently used for catalysis, gas separation and storage. They have recently been applied to drug and gene delivery. The poster shows the benefits of using MOFs as a tool for therapeutic delivery because of their ability to extend therapeutic release time and avoiding the "burst release effect"; protect the therapeutic from degradation; and be a biocompatible system because of their natural biodegradation.

 

Michelle Teplensky

Michelle Teplensky

  • Alumni
  • United States
  • 2014 PhD Chemical Engineering
  • Downing College

My passion for chemical engineering has led me to the interdisciplinary field of drug delivery and nano-based medicines. While completing a B.S. in Chemical-Biological Engineering at MIT, I had the incredible opportunity to research a variety of chemical engineering applications, including enzyme engineering, biomaterials, and nanotherapeutics. These experiences, and my internships in industry, have given me a holistic view of the field and sparked my curiosity to address it further. At Cambridge, for my PhD Chemical Engineering, I pursued a project that combined novel technologies in engineering, biotech, materials science, and biopharmaceuticals, to address the existent global problem of treating debilitating diseases with a more effective drug delivery using Metal-Organic Frameworks (MOFs). The relationships, knowledge, and technical skillset I gained at Cambridge, through the opportunity from the Gates Cambridge Scholarship, have been influential in building my future career as a nanomedical researcher and driver of the commercialisation of new therapies.

Currently I am a postdoctoral fellow at Northwestern University, working to synthesize 3D nanoscale architectures called spherical nucleic acids (SNAs) to provide kinetic control and delivery of vaccine components (stimulant and target molecules) as a potent immunotherapy. I apply this system to various diseases (including prostate cancer) to analyze efficacy in helping develop adaptive immunity against cancer.

Previous Education

Massachusetts Institute of Technology B.S. Chemical-Biological Engineering 2014

Latest News

Gut bacteria links to immune responses in the brain

Bugs in the gut may hold the key to protective immune measures in the brain which could have implications for diseases such as Parkinson’s and multiple sclerosis, according to a new study led by Gates Cambridge Scholar Zachary Fitzpatrick. A paper based on his PhD research has recently been published in Nature and it highlights […]

Exploring the social barriers to take-up of green technology

How can rural communities be encouraged to take up green energy solutions? A new study co-authored by Gates Cambridge Scholar Ramit Debnath investigates the social barriers to uptake of household appliances fuelled by green energy. Based on research on more than 14.5K households in rural communities in Rwanda, the study, published in Renewable Energy, found […]

A new technique to decode the way the nervous system works

How do the billions of neurons in the human brain work together to give rise to thought or certain types of behaviour? A new study led by Gates Cambridge Alumnus Eviatar Yemini [2007] outlines a colouring technique, known as NeuroPAL (a Neuronal Polychromatic Atlas of Landmarks), which makes it possible – at least in experiments […]

An innovative approach to plant protection

Shauna-Lee Chai is passionate about working on wicked problems, about using her entrepreneurial skills to improve the lives of others and about seeing the big picture, something she says her experience as a Gates Cambridge Scholar contributed to. Her expertise is in invasive plant species and for three years she was Board Director of the […]