Synthetic DNA

  • April 20, 2012

Researchers have created synthetic molecules that store and replicate genetic data.

Researchers have created the first synthetic molecules that, alongside the natural molecules DNA and RNA, are capable of storing and replicating genetic information.

Gates Cambridge alumnus Vitor Pinheiro and colleagues from Philipp Holliger’s PNAC Division at the MRC Laboratory of Molecular Biology at Cambridge used sophisticated protein engineering techniques to adapt enzymes, that in nature synthesise and replicate DNA, to establish six new genetic systems based on synthetic nucleic acids. These have the same bases as DNA but the ribose linkage between them is replaced by quite different structures.

In doing this they showed that there is no functional imperative limiting genetic information storage to RNA and DNA. Therefore, the discovery has implications for the understanding of life on Earth. As other informational molecules can be robustly synthesised and replicated, the emergence of life on Earth is likely to reflect the abundance of RNA and DNA precursors in early Earth.

One of the practical applications of the techniques developed by the team is likely to be the development of functional nucleic acids, called aptamers, with diagnostic, therapeutic and analytical applications. Aptamers can have a number of significant advantages over the current small molecule and antibody-based therapies. For example, they bind their target molecule with high specificity (like antibodies) but being smaller they are expected to have better tissue penetration. They have low-toxicity and low-immunogenicity and they can be chemically modified to improve their stability and pharmacokinetic properties.

In the past making aptamers ‘body proof’ contributed significantly to production costs. The new HNA genetic system, developed by the LMB team, addresses that issue by efficiently producing molecules that are from the outset less susceptible to enzymatic degradation and better suited for therapeutic use. The development of new aptamers could be useful in the diagnosis and treatment of cancers, haematological, ocular and inflammatory conditions, and other diseases.

The research team included collaborators from the Katholieke Universiteit Leuven in Belgium, the Center for Evolutionary Medicine and Informatics at Arizona State University and the Nucleic Acid Centre at the University of Southern Denmark. The research was funded by the Medical Research Council, the European Framework program and the European Science Foundation.

The research is published in Science today. Vitor completed his PhD in 2006 in the Biochemistry Department in Cambridge.He has been working on synthetic genetic systems at the LMB for the past couple of years.

 

Latest News

Exploring linguistic variation in ancient times

Sólveig Hilmarsdóttir [2022] fell in love with Classics and Latin grammar in secondary school. She is now in the final stages of her PhD thesis on Latin sociolinguistics, focusing on […]

Scholar scoops neuroscience award

Gates Cambridge Scholar Andrea Luppi has been named one of 25 rising stars in Neuroscience by The Transmitter, a leading neuroscience magazine. The Transmitter’s Rising Stars of Neuroscience recognises early-career […]

The meaning of intelligence

“Cephalopods are beautifully strange animals that look like nothing else on Earth, but they are very smart. Hearing that can be eye-opening for some. I hope to leverage that unexpectedness […]

An Alaskan odyssey

Two authors of the Arctic were in conversation at Bill Gates Sr. House this week to celebrate the publication of Ben Weissenbach’s new book North to the Future. Ben was […]