Transforming supramolecular complexes

  • August 17, 2018
Transforming supramolecular complexes

Derrick Roberts is lead author on a paper on research which has succeeded in transforming the structure of a supramolecular complex in three different ways.

Switching between the structures allows us to make use of all their properties on demand.

Derrick Roberts

Researchers have, for the first time, succeeded in transforming the structure of a supramolecular complex in three different ways, according to a new paper.

Gates Cambridge Scholar Derrick Roberts [2012] is co-lead author with Dr Ben Pilgrim on the paper published in the Journal of the American Chemical Society which relates to his research while at the University of Cambridge.

His research focused on metal-containing supramolecular complexes. Organic ligands self-assemble around metal atoms to form molecular cages of various sizes and shapes. Researchers have been able to change a complex’s shape by changing either the metal or the ligand, but until now they have not been able to create a particular shape by design.

The newly published paper describes the creation of a supramolecular complex that converts between three different shapes – a tetrahedron, helix and prism.

Derrick, who is now a post-doctoral fellow at the Karlinska Institute, says: “Switching between the structures allows us to make use of all their properties on demand.” For instance, prism-shaped complexes can make holes in cell membranes and mimic artificial ion channels; helical complexes can interact with DNA; and tetrahedral cages can trap reactive chemicals. He describes this as making the complex "like a Swiss Army knife”.

The research, led by Professor Jonathan Nitschke at the Department of Chemistry, first combined iron atoms and nitrogen-containing ligands to form a tetrahedral complex. Cyclooctyne was added, which attached to a reactive portion in the centre of each ligand, slightly bending it and enabling the complex to change its structure – mainly to a helical structure.  

To change it back to a tetrahedral structure, the researchers boosted the bonds between the ligands and the metal atoms at the corners of the tetrahedron.

Finally, the researchers used anion templating to convert the complex into a prism structure, adding a salt containing PF6 anions.

 
 
Derrick Roberts

Derrick Roberts

  • Alumni
  • Australia
  • 2012 PhD Chemistry
  • Trinity College

I was born in Singapore in 1988 and was raised in Sydney, Australia. From 2007–2010, I undertook a BSc. (Adv) Hons. at the University of Sydney, Australia, for which I was awarded first class honours and the University Medal in Physical/Organic Chemistry. In 2012 I obtained an MSc. in polymer chemistry from Sydney University under the supervision of Professors Sebastien Perrier and Maxwell J. Crossley. From 2013 to 2016, I was awarded a Gates Cambridge Scholarship to undertake PhD studies under Professor Jonathan Nitschke at the University of Cambridge. My PhD thesis explored the covalent post-assembly modification of metallosupramolecular architectures.

From February 2017-2019, I undertook a Marie Curie Postdoctoral Fellowship in the Stevens Group at the Karolinska Institute, Sweden. My work focused on the preparation of stimuli-responsive synthetic biomaterials for accelerating the healing of chronic skin wounds.

From June 2019, I will join the faculty at the University of Sydney's school of chemistry as a Discovery Early Career Research Award Fellow, funded by the Australian Research Council. My work will focus on stimuli-responsive self-assembled polymers.

Previous Education

University of Sydney MSc., Polymer Chemistry 2012
University of Sydney BSc. Adv (Hons 1M), Physical–Organic Chemistry 2010

Latest News

Inclusive conservation

Rohini Chaturvedi finished her PhD at a difficult time for many students – in the midst of the global economic crisis of the early 2010s. But through a combination of hard work, initiative and serendipity she has found an impressive way to extend the work she did at Cambridge to promote conservation efforts in India. […]

Research impact award for Gates Cambridge Scholar

A Gates Cambridge Scholar is one of two winners of the 2023 Sandra Dawson Research Impact Award for his work on the economics of climate change earlier this month. The annual award was established through a generous donation from Professor Dame Sandra Dawson, a former Director of Cambridge’s Judge Business School. Winners are chosen based […]

AI system self-organises to resemble brains of complex organisms

A team of Cambridge scientists, co-led by a Gates Cambridge Scholar, have shown that placing physical constraints on an artificially-intelligent system – in much the same way that the human brain has to develop and operate within physical and biological constraints – allows it to develop features of the brains of complex organisms in order […]

Scholar wins history of science & medicine essay prize

A Gates Cambridge Scholar has won a prestigious essay competition about the history of early science with a treatise on evidence of knowledge exchange between the Ming-Chinese and Iberian conventions in the 16th century. The essay competition was run by the Early Sciences Forum of the History of Science Society and the Early Science and Medicine journal […]