Understanding how proteins fold

  • February 5, 2020
Understanding how proteins fold

Lisa Neidhardt's study looks to understand the mechanisms of protein folding, with implications for age-related diseases.

There is hope that over time a better understanding of the cell’s coping mechanisms may translate into the design of helpful interventions.

Lisa Neidhardt

A new study co-authored by a Gates Cambridge Scholar sheds light on the mechanisms of protein folding and could be an important step towards developing treatments for age-related diseases.

Lisa Neidhardt is co-first author of the study published in eLife Sciences. Lisa has also spoken about her findings at a recent UK and NL Chaperone Club conference at the University of Manchester where she won first prize for her presentations.

Her work focuses on understanding the folding process in proteins. Proteins are produced as linear polymers of amino acids. To function, they must fold on themselves, creating three-dimensional objects with diverse activities.

Cells have chaperones that can assist this folding process, and these are found in all the major sites of protein production, notably, also in the endoplasmic reticulum, the site of folding of most secreted proteins destined for use outside the cell. To match the supply of chaperones to the demand of unfolded proteins, cells are endowed with tools, referred to as stress receptors, that recognise the burden of unfolded proteins and generate signals that inform cells on the need for more chaperones.

However, the nature of the recognition process by which the stress receptors are activated in proportion to the burden of unfolded proteins remains incompletely understood.

The new study reveals mechanistic insights into the regulation of the stress-receptor IRE1 that is maintained in an inactive state (repressed) by BiP, a major chaperone of the endoplasmic reticulum. The data supports a model whereby recognition of the burden of unfolded proteins is based on the availability of enough BiP to repress IRE1, with rising levels of unfolded proteins competing with IRE1 for BiP’s attention, releasing the brake BiP imposes on IRE1 activity.

Lisa [2019], who is doing a PhD in Medical Science, says: “Our findings bear on a fundamental question in life science, the recognition by cells of unfolded proteins. The burden of unfolded proteins protein acting over time, contributes to the attrition of organismal function in aging-related diseases. Therefore, there is hope that over time a better understanding of the cell’s coping mechanisms may translate into the design of helpful interventions.”

Lisa Neidhardt

Lisa Neidhardt

  • Scholar
  • Germany
  • 2019 PhD Medical Science at the Cambridge Institute for Medical Research
  • Jesus College

Since my first biology lessons in school I have been fascinated by understanding nature and I have steadily developed the strong ambition to become a scientific researcher. I undertook my Bachelor’s and Master’s study in biochemistry at Free University of Berlin, where my research mainly focused on protein folding homeostasis during aging and neurodegenerative diseases in particular of Huntington’s disease. For my PhD I am going to join the laboratory of David Ron at the Cambridge Institute for Medical Research, where I will study cellular adaptations to the stress of unfolded and misfolded proteins in the secretory pathway. The unfolded protein response (UPR) defends protein folding homeostasis in the endoplasmic reticulum (ER) by matching the folding capacity to the unfolded protein load in the compartment. This simple feedback process impacts the function of the secretory pathway and because protein secretion is central to intercellular communication, ER stress and the response to it influences many physiological and pathophysiological processes. With this research I hope to identify new components of this regulatory network to integrate these into an understanding of the pathophysiology of common human diseases, which may one day pave the way for pharmacological intervention in UPR signalling. I am truly honoured to become a member of the Gates Cambridge family and look forward to connecting to other scholars that share the motivation to actively shape our future.

Previous Education

Free University of Berlin Biochemistry 2018
Free University of Berlin Biochemistry 2015

Latest News

Rare genetic disease may protect Ashkenazi Jews against TB

Scientists may have solved the question of why Ashkenazi Jews are significantly more susceptible to a rare genetic disorder known as Gaucher disease – and the answer may help settle the debate about whether they are less susceptible to tuberculosis (TB). In research published today in Proceedings of the National Academy of Sciences (PNAS), Cambridge […]

Lifetime honour for former Provost

Professor Barry Everitt, former Provost of the Gates Cambridge Trust, has been elected a lifetime Fellow of the American Association for the Advancement of Science (AAAS) the world’s largest general scientific society and publisher of the Science family of journals. AAAS has elected more than 500 scientists, engineers and innovators from around the world and […]

‘Tackle climate change misinformation through computational social science’

Future leaders and researchers need to be urgently trained to tackle climate change misinformation through an interdisciplinary approach that foregrounds computational social science and extends beyond laboratories and university campuses to shape the science-policy interface and rebuild public trust in climate research, according to leading academics. Writing in Nature Human Behaviour, the academics, including Dr Ramit […]

An existential psychological thriller for aesthetes

Christy Edwall’s first novel, History Keeps Me Awake at Night, out in early February, has been described as “an existential psychological thriller for aesthetes and lovers of cultural London and the world… A story cleverly told of a young woman involved in contemporary forms of global voyeurism”. It tells the story of Margit, a London […]