What accounts for humans’ higher cognitive skills?

  • May 30, 2022
What accounts for humans’ higher cognitive skills?

Andrea Luppi's latest study shows how the human brain processes information in ways that support higher cognitive functions.

Information is not a monolithic entity: disentangling how the brain uses different kinds of information is paramount if we are to make progress on our understanding of the brain as an information-processing system.

Andrea Luppi

New research shows how the human brain processes information in ways that support higher cognitive functions than animals.

The study, on which Gates Cambridge Scholar Andrea Luppi [2019] is first author, has just been published in Nature Neuroscience.

The researchers used tools from information theory to analyse brain data in humans and other primates and found that the human brain relies on a type of information called synergy to support higher cognitive functions – and it is better at doing so than the brains of other primates.

Scientists have long been interested in discovering what accounts for humans’ sophisticated cognitive skills. The study looked at how the brain organises neural information processing.

They organised the functional interactions between brain regions into synergistic and redundant components which revealed their distinct roles in information-processing.

They then combined functional and structural neuroimaging with meta-analytic results to demonstrate that redundant interactions are predominantly associated with structurally coupled, modular sensorimotor processing.

Synergistic interactions, on the other hand, were shown to support integrative processes and complex cognition across higher-order brain networks.

The researchers discovered that the human brain leverages synergistic information to a greater extent than non-human primates, with high-synergy association cortices exhibiting the highest degree of evolutionary cortical expansion. Synaptic density mapping from positron emission tomography and convergent molecular and metabolic evidence also demonstrated that these synergistic interactions are supported by receptor diversity and human-accelerated genes underpinning synaptic function.

They say: “This information-resolved approach provides analytic tools to disentangle information integration from coupling, enabling richer, more accurate interpretations of functional connectivity, and illuminating how the human neurocognitive architecture navigates the trade-off between robustness and integration.”

Andrea, [2019] who is doing a PhD in Clinical Neurosciences and is in the Cognition and Consciousness Imaging Group led by Dr Emmanuel Stamatakis,  adds: “Information is not a monolithic entity: disentangling how the brain uses different kinds of information is paramount if we are to make progress on our understanding of the brain as an information-processing system.”

Andrea has published several previous papers exploring how the brain works in relation to consciousness.

Picture credit: Alex Blăjan alexb and Wikimedia commons.

Latest News

New series explores complex leadership questions

Two Gates Cambridge Scholars debate how to lead ethically in unethical times in the first episode of the third series of the Gates Cambridge podcast, So, now what? – out […]

Scholar receives Global Innovation Fellowship

Interdisciplinary social scientist Mona Jebril has been awarded a British Academy Global Innovation Fellowship which will see her spending a year working at the Carnegie Endowment for International Peace think […]

From physics to mental health: A passion for communicating learning

Matthew Blacker – or “Blacker” to his friends – has a lot of strings to his bow. He is a physicist with a fascination for quantum gravity and, in particular, […]

Bestselling author to speak about how to redefine success

Best-selling author Alan Guarino will be in conversation with Professor Kamal Munir as part of Gates Cambridge’s On Leadership series early next month. Guarino is author of The Greatness Code, […]