A step forward in combatting pancreatic cancer

  • July 5, 2019
A step forward in combatting pancreatic cancer

Dr Tim Humpton is co-lead on a new study into mitophagy in pancreatic cancer cells.

Pancreatic cancer is a devastating disease with a dismal five-year survival rate. One feature of pancreatic cancer cells is an incredible ability to tolerate starvation-like conditions. During my time at Cambridge, I was interested in what made this possible.

Tim Humpton

Research into how cancer cells destroy their own mitochondria could offer a promising new target for pancreatic cancer therapies, according to a new study.

The study is co-led by Gates Cambridge Scholar Dr Tim Humpton and published in the journal Cancer Discovery.

The research, which is part of a long-running collaboration between Dr Humpton at the CRUK Beatson Institute in Glasgow and Dr Dave Tuveson and his group of researchers at Cold Spring Harbor Laboratory in the USA, is based in part on work done by Dr Humpton [2010] while he was doing his PhD in Biochemistry at the University of Cambridge.

He says: “Pancreatic cancer is a devastating disease with a dismal five-year survival rate. One feature of pancreatic cancer cells is an incredible ability to tolerate starvation-like conditions. During my time at Cambridge, I was interested in what made this possible. I discovered that unlike normal cells that keep spare mitochondria in reserve, pancreatic cancer cells instead destroy surplus mitochondria through a process called mitophagy. This strategy increases pancreatic cancer cell resilience in two ways – by limiting the production of toxic reactive oxygen species from mitochondria and by freeing limited nutrients that would’ve been consumed by mitochondria to use for tumour growth instead.”

The new study describes what happens when a protein called KRAS becomes active in the uniquely nutrient-depleted environment of a pancreas tumour. KRAS starts a “signaling cascade” which results in mitophagy and the diversion of glucose and glutamine away from the remaining mitochondria. These diverted nutrients are used to support cell division. 

Instead of stopping KRAS directly, which was not possible, the researchers traced the cascade of protein signals that follows KRAS activation. They found one pathway which leads to an increase in the protein NIX. NIX is directly responsible for triggering that mitophagy stage which appears to be so crucial for cancer cell proliferation.

The study shows that by inhibiting the NIX pathway cancer cells might be prevented from using energy the way they need to in order to proliferate. The study was done on mice and the team are now looking to see if the same applies with human pancreatic cancer cells.

Dr Humpton is now investigating whether this pathway generalises to other cancers that contain mutated KRAS while his collaborator Dr Dave Tuveson and his group are now turning their attention to disrupting the NIX pathway in human pancreatic cancer cells.

Dr Humpton says: “We found that high levels of mitophagy are correlated with worse prognosis in pancreatic cancer patients and that blocking mitophagy significantly delays tumours and increases survival in an animal model of pancreatic cancer. We now believe that mitophagy may represent a new and potentially targetable dependency in pancreatic cancer.”

*Picture credit: Cancerous cells forming a lump in the pancreatic tissue. Source: http://www.scientificanimations.com/wiki-images/. Author: Scientific Animations Inc.

Timothy Humpton

Timothy Humpton

  • Alumni
  • United States
  • 2010 PhD Oncology
  • Corpus Christi College

I am a Reader and Research Group Leader within the Department of Biological and Biomedical Sciences at Glasgow Caledonian University in Glasgow, UK. My research interests centre on elucidating protective functions of the p53 tumour suppressor protein in the liver. I am particularly interested in uncovering non-tumour functions for p53 during, for example, liver regeneration, in the response to overfeeding, and in the progression from fatty liver (NAFLD) to NASH and liver cancer (HCC). My work is supported by grant funding from Tenouvs Scotland (2022-2023), the Academy of Medical Sciences (AMS) Springboard scheme (2023-2025), and the UK Medical Research Council through a New Investigator Research Grant (2024-2027).

Previous Education

Massachusetts Institute of Technology Biology 2010

Latest News

Rethinking feminist approaches to gender-based violence

Ilaria Michelis [2019] was completely surprised when, earlier this year, she was awarded this year’s Journal of Gender Studies Janet Blackman Prize. The Prize celebrates scholarship on international feminist movements and trade unions/women in work.  It was awarded for an article she published the year before in the Journal of Gender Studies based on an issue […]

Scholars scoop three social impact awards

Three Gates Cambridge Scholars have been recognised with awards from the Vice Chancellor of the University of Cambridge. The 15 Social Impact Awards in six categories were launched for the first time by Cambridge Hub in 2018-19, to celebrate students who have shown exceptional achievement in, and commitment to, creating positive social change. Since then, […]

Report highlights fatal health risk of climate change in Europe

Climate change is here, in Europe, and it kills. This is the warning of 69 contributors of the 2024 Europe report of the Lancet Countdown, published today in the Lancet Public Health and led by Gates Cambridge Scholar Kim Van Daalen [2018]. Tracking the links between climate change and health across the region, the new […]

Tracing the role of transposable elements in disease

What causes genetic disease? Rebecca Berrens’ research focuses on transposable elements or transposons, pieces of DNA formed as a result of ancient viruses that inserted into our genome. These can damage genes when they are active in the early stages of human development because they are able to move about the genome.  This can result […]