Breakthrough for diabetic mums-to-be

  • April 30, 2015
Breakthrough for diabetic mums-to-be

A body artist from Norwich is the first mum to give birth naturally with an artificial pancreas.

Treating diabetes in pregnancy can be particularly challenging because hormone levels are constantly changing and blood sugars can be difficult to predict. I study new treatments for diabetes in pregnancy and it's great to see our research helping mums have healthier pregnancies.

Dr Zoe Stewart

The first natural birth to a mother with diabetes who has been fitted with an artificial pancreas devised by researchers, including a Gates Cambridge Scholar, took place this week.

Body artist Catriona Finlayson-Wilkins from Norfolk has Type 1 Diabetes, but used an artificial pancreas to produce insulin throughout her pregnancy. She gave birth to a boy at Norfolk and Norwich University Hospital on Tuesday. She is the first mother to use the device to give birth outside the main research site at Cambridge University Hospitals. Three mothers have previously given birth, but all via caesarian section. Women who have diabetes in pregnancy face higher rates of birth defects, oversized babies, pre-term delivery and stillbirth than other pregnant women.

It is estimated that up to 5% of women giving birth in England and Wales have either pre-existing diabetes or gestational diabetes and the number with Type 1 and Type 2 diabetes is rising. The technology is being trialled by the Closed Loop in Pregnancy study, based at the Metabolic Research Laboratories at the University of Cambridge The pancreas is the organ which produces insulin, which is one of the main hormones that help to regulate blood glucose levels.

In Type 1 diabetes, the beta cells that produce insulin are attacked by the body's immune system so an artificial pancreas can help to maintain insulin production, keeping the symptoms of diabetes at bay. The artificial pancreas device system (also known as an APD system, AP or APDS) is a small, portable medical device that is being designed to carry out the function of a healthy pancreas in controlling blood glucose levels in women with Type 1 diabetes. It uses digital communication technology to automate insulin delivery. An APD system is worn externally on the body, and is made up of three functional components: continuous glucose monitoring, a computer algorithm (mathematical instructions which calculate the insulin dose), developed by Director of Research Dr Roman Hovorka, and an insulin pump. These three components are termed an artificial pancreas or ‘closed loop’.

Full results of the study are expected to be published later this year. If the findings are positive, this may pave the way for the technology to become available for more women with diabetes who conceive in the future.

Dr Helen Murphy, Senior Research Associate/Honorary Consultant Physician at the Metabolic Research Laboratories and the Principal Investigator of the study, says that the first natural birth using the technology represents an exciting step forward in the treatment of diabetes in pregnancy. She said: "The artificial pancreas is an exciting new technology that may help us to treat diabetes in pregnancy and create a group of healthier mothers and babies.”

Dr Zoe Stewart [2013], a Gates Cambridge Scholar and Clinical Research Fellow on the study, said: “Treating diabetes in pregnancy can be particularly challenging because hormone levels are constantly changing and blood sugars can be difficult to predict. I study new treatments for diabetes in pregnancy and it's great to see our research helping mums have healthier pregnancies.”

The research has been supported by Gates Cambridge, the National Institute for Health Research and Diabetes UK. 

Latest News

Research impact award for Gates Cambridge Scholar

A Gates Cambridge Scholar is one of two winners of the 2023 Sandra Dawson Research Impact Award for his work on the economics of climate change earlier this month. The annual award was established through a generous donation from Professor Dame Sandra Dawson, a former Director of Cambridge’s Judge Business School. Winners are chosen based […]

AI system self-organises to resemble brains of complex organisms

A team of Cambridge scientists, co-led by a Gates Cambridge Scholar, have shown that placing physical constraints on an artificially-intelligent system – in much the same way that the human brain has to develop and operate within physical and biological constraints – allows it to develop features of the brains of complex organisms in order […]

Scholar wins history of science & medicine essay prize

A Gates Cambridge Scholar has won a prestigious essay competition about the history of early science with a treatise on evidence of knowledge exchange between the Ming-Chinese and Iberian conventions in the 16th century. The essay competition was run by the Early Sciences Forum of the History of Science Society and the Early Science and Medicine journal […]

Addressing the complex roots of environmental crime

Simone Haysom [2009] says her MPhil at the University of Cambridge helped to change her life course. While she had been interested in climate change and human geography as an undergraduate, doing the MPhil in Environment, Society and Development at an international university as part of the Gates Cambridge cohort broadened her perspective and set […]