Chimpanzee cultures

  • July 21, 2015
Chimpanzee cultures

Research provides new evidence of cultural diversification between neighbouring chimpanzee communities

“Given the close evolutionary relationship between chimpanzees and humans, insights into what drives cultural diversification in our closest living relatives will in turn shed light on how cultural differences emerge and are maintained between adjacent groups in human societies.”

Kathelijne Koops

For centuries it has been thought that culture is what distinguishes humans from other animals, but over the past decade this idea has been repeatedly called into question. Cultural variation has been identified in a growing number of species in recent years, ranging from primates to cetaceans. Chimpanzees, our closest living relatives, show the most diverse cultures aside from humans, most notably, in their use of a wide variety of tools.

The method traditionally used to establish the presence of culture in wild animals compares behavioural variation across populations and excludes all behavioural patterns that can be explained by genetic or environmental differences across sites. Nevertheless, it is impossible to conclusively rule out the influence of genetics and environmental conditions in geographically distant populations.

To circumnavigate this problem, researchers, led by Dr Kathelijne Koops [2006], took a new approach. “We compared neighbouring chimpanzee groups living under similar environmental conditions, which allows for the investigation of fine scale cultural differences, whilst keeping genetics constant,” said Koops.

She and colleagues from Kyoto University and Freie Universität Berlin compared the length of tools used for ‘ant-dipping’ between two neighbouring chimpanzee communities, M-group and S-group, in the Kalinzu Forest, Uganda. Dipping for army ants is one of the hallmark examples of culture in chimpanzees and involves the use of a stick to extract the highly aggressive army ants from their underground nests.

Previous research has shown that ant-dipping tool length varied across chimpanzee study sites in relation to the army ant species (Dorylus spp.) that were present. So Koops compared the availability of the different species of army ants and the length of dipping tools used in the two adjacent chimpanzee communities.

The researchers found that M-group tools were significantly longer than S-group tools, despite identical army ant species availability. Considering the lack of ecological differences between the two communities, the tool length difference was concluded to be cultural. “Our findings highlight how cultural knowledge can generate small-scale cultural diversification in neighbouring groups,” said Koops.

“Given the close evolutionary relationship between chimpanzees and humans, insights into what drives cultural diversification in our closest living relatives will in turn shed light on how cultural differences emerge and are maintained between adjacent groups in human societies,” said Koops, who conducted the work at Cambridge University’s Division of Biological Anthropology and at Zurich University’s Anthropological Institute and Museum.

The research is published today in the Nature journal Scientific Reports.

*Picture credit: Kathelijne Koops. 

Latest News

Gut bacteria links to immune responses in the brain

Bugs in the gut may hold the key to protective immune measures in the brain which could have implications for diseases such as Parkinson’s and multiple sclerosis, according to a new study led by Gates Cambridge Scholar Zachary Fitzpatrick. A paper based on his PhD research has recently been published in Nature and it highlights […]

Exploring the social barriers to take-up of green technology

How can rural communities be encouraged to take up green energy solutions? A new study co-authored by Gates Cambridge Scholar Ramit Debnath investigates the social barriers to uptake of household appliances fuelled by green energy. Based on research on more than 14.5K households in rural communities in Rwanda, the study, published in Renewable Energy, found […]

A new technique to decode the way the nervous system works

How do the billions of neurons in the human brain work together to give rise to thought or certain types of behaviour? A new study led by Gates Cambridge Alumnus Eviatar Yemini [2007] outlines a colouring technique, known as NeuroPAL (a Neuronal Polychromatic Atlas of Landmarks), which makes it possible – at least in experiments […]

An innovative approach to plant protection

Shauna-Lee Chai is passionate about working on wicked problems, about using her entrepreneurial skills to improve the lives of others and about seeing the big picture, something she says her experience as a Gates Cambridge Scholar contributed to. Her expertise is in invasive plant species and for three years she was Board Director of the […]