Epigenome breakthrough

  • February 6, 2014
Epigenome breakthrough

A new computational method which can identify changes in the epigenome across human populations that are associated with diseases such as arthritis has been developed by Gates Cambridge Alumnus James Zou.

A new computational method which can identify changes in the epigenome across human populations that are associated with diseases such as arthritis has been developed by a Gates Cambridge Scholar.

James Zou leads a study on the method which has just been published in Nature Methods.

There has been a lot of interest in finding genetic mutations associated with diseases, but finding epigenetic changes has been challenging up until now.

It is well known that genetic changes, i.e. mutations to DNA, can increase or decrease our risk for a variety of diseases. However, increasing interest is now focusing on how epigenetic changes – changes in the 3D packaging of DNA inside the cell and which part of the genome is accessible – can also be a significant driver for many diseases, including many forms of cancer.

The standard way to identify genetic mutations is to compare the genomes of people with a disease and healthy people to see which mutations are specific to the patients. However, it is very difficult to use this approach to identify epigenetic changes since different cells in the human body have very different epigenomes.

When the epigenome of an individual is measured, a heterogeneous sample of cells is used. So most of the differences highlighted in the epigenomes are due to the fact that samples from different individuals contain different mixtures of cells. This gives rise to many false signals and makes it difficult to identify the true epigenetic changes associated with disease.

The new research proposes a method, FaST-LMM-EWASher, that automatically corrects for cell-type composition without the need for explicit knowledge of it. It was done in collaboration with scientists at Microsoft Research.

James [2007], who did Part III Applied Mathematics at Cambridge, says: “The algorithm we developed for the paper solves this problem by modelling the heterogeneity of samples.”

James is currently a research fellow at the Simons Institute for the Theory of Computing at UC Berkeley. He says some of the mathematical techniques he learnt at Cambridge were essential for developing the algorithm.

Picture credit: www.freedigitalphotos.net and Photokanok.

 

 

Latest News

21st century curator

Even while he was doing his PhD in art history, Julien Domercq was not only getting involved in the British art scene, he was curating one of the biggest art exhibitions of the day. Julien [2013] had taken up a two-year entry-level contract at the National Gallery a couple of years into his PhD on […]

Understanding migrant stories

Two Gates Cambridge Scholars are collaborating on a new research, story-telling and advocacy enterprise which aims to record journeys of migration, amplify the voices of migrants and build empathy for the growing number of people who are displaced or have to leave their country. Noor Shahzad, founder at Migration Collective, became interested in the stories […]

Gates Cambridge Class of 2024 announced

The Gates Cambridge Class of 2024 made up of 75 outstanding new scholars has been officially announced. The Gates Cambridge scholarship programme is the University of Cambridge’s flagship international postgraduate scholarship programme. It was established through a US$210 million donation to the University of Cambridge from the Bill and Melinda Gates Foundation in 2000. Since […]

Addressing the mental health emergency

Mental health has been rising up the global health priority list over the last few years, but Covid accelerated it. Yet the resources available to those in crisis situations are few. Gates Cambridge Scholar Usama Mirza is addressing one particular gap in his home country of Pakistan, having recently launched Asia’s first mental health ambulance […]