Exploring the neural bases of consciousness

  • July 27, 2021
Exploring the neural bases of consciousness

Andrea Luppi is second author on a study of the links between neurochemical influences from the brainstem and consciousness

Studying perturbations of consciousness due to anaesthesia or severe brain injury, we show that the key molecule dopamine may play a central role for the maintenance of consciousness in the human brain.

Andrea Luppi

New insights into how neurochemical influences from the brainstem affect the rest of the brain to bring about consciousness could help brain-damaged patients and further our understanding of how consciousness works.

A new study in Proceedings of the National Academy of Sciences [PNAS] by researchers at the Division of Anaesthesia, University of Cambridge investigates the neural bases of consciousness, a subject which is of crucial scientific and clinical importance.

As a result of neuroimaging of the human brain scientists have established that a network of interconnected brain regions known as the default mode network disintegrates in anaesthesia and after brain damage, causing disorders of consciousness.

However, the neurochemical underpinnings of this network change have remained largely unknown until now.

The researchers include first author Lennart Spindler and second author Gates Cambridge Scholar Andrea Luppi, both PhD students in the Cognition and Consciousness Imaging Group led by Dr Emmanuel Stamatakis. They found that across pharmacological (sedation) and pathological (disorders of consciousness) consciousness changes, the source of dopamine in the brain, called “ventral tegmental area”, disconnects from the main hubs of the default mode network.

They also found that the severity of this disconnection was associated with default mode network disintegration, highlighting the relevance of dopamine for consciousness. They therefore propose that dopaminergic modulation may be a central mechanism for consciousness maintenance.

Andrea, [2019] who is doing a PhD in Clinical Neurosciences, says: “Studying perturbations of consciousness due to anaesthesia or severe brain injury, we show that the key molecule dopamine may play a central role for the maintenance of consciousness in the human brain.”

Andrea, who has done both his MPhil and PhD at the Cognition and Consciousness Imaging Group at the University of Cambridge, has published several papers on his work. After publishing a paper on his MPhil thesis, he stated: “To understand consciousness in the brain, we need to understand what different ways of losing consciousness have in common.”

*Picture credit: Neuronal activity c/o Wikimedia Commons.

Latest News

Olympic opening ceremony harks back to tradition of ‘liquid streets’

The opening ceremony of the 2024 Olympic Games today will see athletes from around the world cross the centre of Paris on boats, navigating the waters of the river Seine, using it and its banks as life-size stages. Although the ceremony is being billed as innovative, it is in fact part of a centuries-old tradition […]

Why AI needs to be inclusive

When Hannah Claus [2024] studied computer science at school she soon realised that she was in a room full of white boys, looking at posters of white men. “I could not see myself in that,” she says. “I realised there were no role models to follow and that I had to become that myself. There […]

New book deal for Gates Cambridge Scholar

A Gates Cambridge Scholar has signed a deal to write a book on Indigenous climate justice. The Longest Night will be published by Atria Books, part of Simon & Schuster, and was selected as the deal of the day by Publishers Marketplace earlier this week. Described as “a stunning exploration of the High North and […]

Why understanding risk for different populations can reduce cardiovascular deaths

The incidence of cardiovascular disease (CVD) – the number one cause of death globally – can be reduced significantly by understanding the risk faced by different populations better, according to a new study. Identifying individuals at high risk and intervening to reduce risk before an event occurs underpins the majority of national and international primary […]