Get more energy out of conventional solar cells, thanks to cheap organics

  • October 10, 2014
Get more energy out of conventional solar cells, thanks to cheap organics

A new kind of energy transfer from organic to inorganic semiconductors has been discovered which paves the way for boosting the efficiency of widely used inorganic solar cells with the help of a cheap organic coating.

A new kind of energy transfer from organic to inorganic semiconductors has been discovered which paves the way for boosting the efficiency of widely used inorganic solar cells with the help of a cheap organic coating.

The research team who made the discovery have published their findings in Nature Materials in an article on which Gates Cambridge Scholar Maxim Tabachnyk is lead author.

Maxim [2012], who is doing a PhD in Physics, says: “To develop clean, sustainable and cheap energy sources that can gradually reduce and finally replace the consumption of fossil fuels is one of the major challenges that modern science is facing. Innovative energy sources are needed to reduce the negative environmental impact that burning hydrocarbons, currently the main energy source, has been causing. Further, within this century we will run out of fossil fuels and need a vision how to provide enough energy for future generations with more and more people around the world rising up to an energy-intensive lifestyle.”

Solar cells represent such a clean energy source which produces electricity from sunlight. In the last 50 years semiconductor and solar cell research has focused on silicon as the active material. The fabrication of silicon solar cells has been optimised and their spread skyrocketed in the last decade. However, the maximum power conversion efficiency of silicon-based solar cells is fundamentally limited.

The energy of light is carried by particles called photons. The sun emits photons of various energies, blue photons are, for example, more energetic than red photons. Silicon has a maximum energy that it can extract from each photon and convert to electrical energy. All remaining energy is lost to heat.

The research team led by Dr Akshay Rao found that it could be possible to boost efficiency of the inorganic silicon solar cell by combining it with a cheap organic coating. The crucial property of the organic – a small molecule called pentacene – is its ability to split high energy excitations into two packages.

Maxim says: “We found that it is possible to transfer both of these packages onto an inorganic semiconductor. That means that instead of generating only one energy unit per high-energy light particle as in traditional solar cells, we can generate two energy units in silicon by combining it with the organic.  Another advantage of organics is their processability in solution. That means we can have the organic in an ‘ink’ and cheaply print or possibly even spray the organic on top of a traditional silicon solar cell. This process could be easily and cheaply integrated in existing solar cell fabrication lines or even done in a post-fabrication step. Due to the flexibility in processing and operation, our technology could also improve the performance of other evolving technologies such as perovskite or other thin film solar cells.”

The discovered process of the novel energy transfer paves the way not only to new applications improving solar cells, but potentially also light emitting diodes, sensors or lasers. The team is now investigating how the discovered energy transfer can be extended to other organic/inorganic systems and is developing a cheap organic coating that could be used to boost the power conversion efficiency of conventional solar cells, making them more competitive with alternative energy sources.

Latest News

Knowledge gap on zoonotic disease transmission highlighted

The impact of climate change on migration patterns, particularly in areas which depend on agriculture and livestock, could affect zoonotic disease transmission yet little research has been done to date. A new study, led by Gates Cambridge Scholar and Veterinary Science PhD student Dorien Braam [2018], looks at the research that currently exists, but calls […]

Addressing climate change in words and action

A Gates Cambridge Scholar has called for the US federal government to establish a national, robust and legally binding net-zero target that emphasises comprehensiveness, equity and clarity on the role of offsets.  In an opinion piece in Arizona Republic, Stephen Lezak and his co-authors, including Kate Gallego, the mayor of Phoenix, Arizona, which has done […]

Gates Cambridge mentors: forging bonds and giving back

The Gates Cambridge Scholars Council has been running a mentoring programme since 2018 as part of an effort to bring alumni and scholars closer together, build a stronger sense of community and to give mentors a chance to give back. This year has seen a big increase in the number of mentors coming forward, with […]

Scholar joins COP26 net-zero initiative

A Gates Cambridge Scholar has been appointed as a climate change consultant on a new consortium working on a net-zero vision for the world ahead of the UN Climate Change Conference [COP26] in November. Ramit Debnath will be working on designing the India net-zero profile chapter of the vision along with in-country experts. The international […]