How the brain’s motor system works in old age

  • October 14, 2016
How the brain’s motor system works in old age

Noham Wolpe is lead author of a study on how the brain's motor system compensates for its sensory ability in old age.

This mechanism can shed new light on some of the motor and cognitive changes typically observed with ageing. For example, the stronger reliance on prior experience could hamper the adaptation of movements in a new environment.

Noham Wolpe

How does the brain’s motor system compensate for the decline in our ability to sense the world around us as we get older?

According to new research led by a Gates Cambridge Scholar Noham Wolpe, it does so by relying more strongly on prediction from prior experience.

The study on which Wolpe is lead author, is published in Nature Communications. It shows that this compensatory mechanism of the motor system depends on age-related differences in grey matter integrity and functional connectivity strength in a key brain network for movement.

It is well known that control of voluntary movement – from reaching and grasping, to gait and balance – changes significantly with age. A critical factor in our ability to control our movement and, for instance, prevent ourselves from falling, is how we combine sensory information from the world outside us, with our prediction of the consequences of certain actions based on prior experience. The researchers show that the brain compensates for a reduction in its ability to sense external information, particularly where there is a lot of sensory information to process, by increasing its predictive capacity. This mechanism is associated with changes in the structure and functional connectivity of a particular area of the brain – the pre-supplementary motor area and its brain network, which was seen using MRI scans.

Noham [2010], who is currently completing his medical training, says: "This mechanism can shed new light on some of the motor and cognitive changes typically observed with ageing. For example, the stronger reliance on prior experience could hamper the adaptation of movements in a new environment.”

He adds that “importantly, the mechanism may contribute not only to our understanding of healthy ageing, but can also help to identify elderly people who are at increased risk of developing problems with movement, such as falls".

The study is based on Noham's research after his PhD in Clinical Neurosciences at the University of Cambridge.

*Picture credit: Old man walking in the park of Germia,Prishtine c/o Wikimedia.

 

Noham Wolpe

Noham Wolpe

  • Alumni
  • Israel
  • 2010 PhD Clinical Neurosciences
  • Wolfson College

For most of us, reaching for an object, such as an apple or a pen, is something done seamlessly without requiring much thought. However, carrying out a voluntary movement requires a stream of intricate computations in the brain for planning, initiating, and executing even a simple action. Many neurological and psychiatric disorders – and also healthy ageing – can all influence these computations. My research interests lie in understanding these changes that occur across the lifespan and in cases of disease. I use behavioural tasks that tap into principles from computational neuroscience: for example the integration of different sources of information for performing an action. I combine these tasks with brain imaging methods, such as functional magnetic resonance imaging, which allows me to examine the activity and connectivity of brain networks. My ongoing research following my PhD at Cambridge looks at the effect of age on the brain's motor system. Ageing is typically associated with increased variability in performance across individuals. My research endeavour, therefore, is to find the markers that not only predict healthy ageing, but also those that identify the brain changes that put people at risk to their well-being. Alongside research, I work in clinical psychiatry at Cambridge and Peterborough NHS Foundation Trust.

Links

http://www.neuroscience.cam.ac.uk/directory/profile.php?nw305
https://noham-wolpe.org
https://www.linkedin.com/in/noham-wolpe-51577472

Latest News

Weekend of Research 2021 focuses on major global challenges

Thirteen Gates Cambridge Scholars at the annual Gates Cambridge Weekend of Research last weekend in panel discussions on the environment and migration, global justice and democracy and Artificial Intelligence and technology. The subjects covered ranged from legacies of oppression and revolution in Myanmar to a call to radically scale down gold mining. The event was […]

New app aims to help women through the menopause

A new app which helps women to manage the menopause was soft launched last month in collaboration with Mumsnet. Stella is the first product by Vira Health, a company which was co-founded in 2019 by Gates Cambridge Scholar Rebecca Love. Stella offers women relief from the most common symptoms of menopause, including sleep disturbances, hot […]

A global perspective on gender and health

The middle of a global pandemic may not seem the ideal time to move country with a new baby, but Johanna Riha [2011] took up her new role as a research fellow at the United Nations University International Institute for Global Health (UNU-IIGH) in Malaysia during the pandemic and moved to Kuala Lumpur around a […]

Scholars share 2021 Bill Gates Sr. Prize

Two Gates Cambridge Scholars are sharing the 2021 Bill Gates Sr. Prize in recognition of their outstanding research and social leadership. Emma Soneson and Maša Josipović have been selected for the prize which was established by the Gates Cambridge Trustees in June 2012 in recognition of the late Bill Gates Sr.’s role in establishing the […]