Larger brain size in mammals linked to longer life

  • December 13, 2016
Larger brain size in mammals linked to longer life

Corina Logan's study of red deer shows females with larger brains live longer

We found that some of the cross-species predictions about brain size held for female red deer, and that none of the predictions were supported in male red deer. This indicates that each sex likely experiences its own set of trade-offs with regard to brain size.

Corina Logan

The size of a female animals' brain may determine whether they live longer and have more healthy offspring, according to new research. 
 
The study*, Endocranial volume is heritable and is associated with longevity and fitness in a wild mammal, published in the Royal Society Open Science journal, shows that female red deer with larger brains live longer and have more surviving offspring than those with smaller brains. Brain size is heritable and is passed down through the generations. It is the first extensive study of individual differences in brain size in wild mammals and draws on data comparing seven generations of deer. 
 
Across species of mammals, brain size varies widely. This is thought to be a consequence of specific differences in the benefits and costs of a larger brain. Mammals with larger brains may, for example, have greater cognitive abilities which enable them to adapt better to environmental changes or they may have longer lifespans. But there may also be disadvantages, for instance, larger brains require more energy so that individuals that possess them may show reduced fertility.  
 
The researchers, based at the University of Cambridge's Zoology Department and Edinburgh University's Institute of Evolutionary Biology, wanted to test if they could find more direct genetic or non-genetic evidence of the costs and benefits of large brain size by comparing the longevity and survival of individuals of the same species with different sized brains. Using the skulls of 1,314 wild red deer whose life histories and breeding success had been monitored in the course of a long-term study on the Isle of Rum, they found that females with larger endocranial volumes lived longer and produced more surviving offspring in the course of their lives. 
 
Lead author Corina Logan, a Gates Cambridge Scholar and Leverhulme Early Career Research Fellow in Cambridge's Department of Zoology, says: "The reasons for the association between brain size and longevity are not known, but other studies have suggested that larger brains are a consequence of the longer-lived species having longer developmental periods in which the brain can grow. These hypotheses were generated from cross-species correlations; however, testing such hypotheses requires investigations at the within-species level, which is what we did." 
 
Corina adds: "We found that some of the cross-species predictions about brain size held for female red deer, and that none of the predictions were supported in male red deer. This indicates that each sex likely experiences its own set of trade-offs with regard to brain size.” The study also showed that females' relative endocranial volume is smaller than that of males, despite evidence of selection for larger brains in females."

Corina said: "We think this is likely due to sex differences in the costs and benefits related to larger brains. We don’t know what kinds of trade-offs each sex might encounter, but we assume there must be variables that constrain brain size that are sex specific, which is why we see selection in females, but not males." 
 
Tim Clutton-Brock, who set up the Rum Red Deer study with Fiona Guinness in 1972 and initiated the work on brain size, points out that the reason that this kind of study has not been conducted before is that it requires long term records of a large number of individuals across multiple generations and data of this kind are still rare in wild animals. 
 
*The study, Endocranial volume is heritable and is associated with longevity and fitness in a wild mammal, is co-authored by C.J. Logan, R. Stanley, A.M. Thompson, T.H. Clutton-Brock from the Department of Zoology at the University of Cambridge and L.E.B. Kruuk from the Institute of Evolutionary Biology, University of Edinburgh.It is published in Royal Society Open Science 3:160622. Picture credit: Alex Thompson.

Latest News

Olympic opening ceremony harks back to tradition of ‘liquid streets’

The opening ceremony of the 2024 Olympic Games today will see athletes from around the world cross the centre of Paris on boats, navigating the waters of the river Seine, using it and its banks as life-size stages. Although the ceremony is being billed as innovative, it is in fact part of a centuries-old tradition […]

Why AI needs to be inclusive

When Hannah Claus [2024] studied computer science at school she soon realised that she was in a room full of white boys, looking at posters of white men. “I could not see myself in that,” she says. “I realised there were no role models to follow and that I had to become that myself. There […]

New book deal for Gates Cambridge Scholar

A Gates Cambridge Scholar has signed a deal to write a book on Indigenous climate justice. The Longest Night will be published by Atria Books, part of Simon & Schuster, and was selected as the deal of the day by Publishers Marketplace earlier this week. Described as “a stunning exploration of the High North and […]

Why understanding risk for different populations can reduce cardiovascular deaths

The incidence of cardiovascular disease (CVD) – the number one cause of death globally – can be reduced significantly by understanding the risk faced by different populations better, according to a new study. Identifying individuals at high risk and intervening to reduce risk before an event occurs underpins the majority of national and international primary […]