New method for studying role of TEs in genetic changes

  • November 15, 2021
New method for studying role of TEs in genetic changes

A study led by Rebecca Berrens looks at a new method for studying the role of transposable elements in genetic information

We believe the studies will reveal the molecular origins of mammalian development and could pave our way towards identification and treatment of diseases with genetic bases.

Rebecca Berrens et al

A new study reports a novel technique for studying the development of transposable elements in genetic information which can lead to genetic diseases and cancer.

The study, ‘Locus-specific expression of transposable elements in single cells with CELLO-seq’, is published in Nature Biotechnology. Lead author is Rebecca Berrens [2012].

It addresses the role of transposable elements [TEs] and how they can change their genomic position, potentially causing genetic diseases and cancer.

It is commonly believed that genetic information in every cell of our body is the same, but this is only true for protein coding genes, which make up 2% of the genome. In fact, 50% of the genome is comprised of TEs. While in most mature cells TEs are inactive, during early development, the very first embryonic cell divisions, TEs are very active.

The role of TEs in regulating diverse biological processes, from early development to cancer, is becoming increasingly appreciated by scientists. However, unlike other biological processes, next generation single-cell sequencing technologies are poorly suited to investigating TE expression: in particular, their highly repetitive nature means that short cDNA reads cannot be unambiguously mapped to a specific location.

The researchers chart how they have developed an experimental and analytical method to investigate whether TEs are transcriptionally active in all or only a subpopulation of cells during embryonic development. CELLO-seq is a computational framework for performing long-read RNA sequencing at single cell resolution.  Using the novel technique to study the relationship between the expression of individual elements and putative regulators in 2-cell mouse blastomeres and human-induced pluripotent stem cells, they found evidence of distinct regulatory mechanisms.

The researchers, including Dr Berrens [2012] , who did her PhD in Biological Science, say: ”We believe the studies will reveal the molecular origins of mammalian development and could pave our way towards identification and treatment of diseases with genetic bases.”

*Picture credit: PublicDomainPictures and Wikimedia commons.

Latest News

Olympic opening ceremony harks back to tradition of ‘liquid streets’

The opening ceremony of the 2024 Olympic Games today will see athletes from around the world cross the centre of Paris on boats, navigating the waters of the river Seine, using it and its banks as life-size stages. Although the ceremony is being billed as innovative, it is in fact part of a centuries-old tradition […]

Why AI needs to be inclusive

When Hannah Claus [2024] studied computer science at school she soon realised that she was in a room full of white boys, looking at posters of white men. “I could not see myself in that,” she says. “I realised there were no role models to follow and that I had to become that myself. There […]

New book deal for Gates Cambridge Scholar

A Gates Cambridge Scholar has signed a deal to write a book on Indigenous climate justice. The Longest Night will be published by Atria Books, part of Simon & Schuster, and was selected as the deal of the day by Publishers Marketplace earlier this week. Described as “a stunning exploration of the High North and […]

Why understanding risk for different populations can reduce cardiovascular deaths

The incidence of cardiovascular disease (CVD) – the number one cause of death globally – can be reduced significantly by understanding the risk faced by different populations better, according to a new study. Identifying individuals at high risk and intervening to reduce risk before an event occurs underpins the majority of national and international primary […]