New method for studying role of TEs in genetic changes

  • November 15, 2021
New method for studying role of TEs in genetic changes

A study led by Rebecca Berrens looks at a new method for studying the role of transposable elements in genetic information

We believe the studies will reveal the molecular origins of mammalian development and could pave our way towards identification and treatment of diseases with genetic bases.

Rebecca Berrens et al

A new study reports a novel technique for studying the development of transposable elements in genetic information which can lead to genetic diseases and cancer.

The study, ‘Locus-specific expression of transposable elements in single cells with CELLO-seq’, is published in Nature Biotechnology. Lead author is Rebecca Berrens [2012].

It addresses the role of transposable elements [TEs] and how they can change their genomic position, potentially causing genetic diseases and cancer.

It is commonly believed that genetic information in every cell of our body is the same, but this is only true for protein coding genes, which make up 2% of the genome. In fact, 50% of the genome is comprised of TEs. While in most mature cells TEs are inactive, during early development, the very first embryonic cell divisions, TEs are very active.

The role of TEs in regulating diverse biological processes, from early development to cancer, is becoming increasingly appreciated by scientists. However, unlike other biological processes, next generation single-cell sequencing technologies are poorly suited to investigating TE expression: in particular, their highly repetitive nature means that short cDNA reads cannot be unambiguously mapped to a specific location.

The researchers chart how they have developed an experimental and analytical method to investigate whether TEs are transcriptionally active in all or only a subpopulation of cells during embryonic development. CELLO-seq is a computational framework for performing long-read RNA sequencing at single cell resolution.  Using the novel technique to study the relationship between the expression of individual elements and putative regulators in 2-cell mouse blastomeres and human-induced pluripotent stem cells, they found evidence of distinct regulatory mechanisms.

The researchers, including Dr Berrens [2012] , who did her PhD in Biological Science, say: ”We believe the studies will reveal the molecular origins of mammalian development and could pave our way towards identification and treatment of diseases with genetic bases.”

*Picture credit: PublicDomainPictures and Wikimedia commons.

Latest News

Addressing the mental health emergency

Mental health has been rising up the global health priority list over the last few years, but Covid accelerated it. Yet the resources available to those in crisis situations are few. Gates Cambridge Scholar Usama Mirza is addressing one particular gap in his home country of Pakistan, having recently launched Asia’s first mental health ambulance […]

Food security in Africa through a multi-disciplinary lens

Three Gates Cambridge Scholars are collaborating on an innovative project to map and address the disappearance of historically undervalued African indigenous and traditional food crops at a time of climate crisis. The project is the brainchild of Dr Carol Ibe, founder of the JR Biotek Foundation, a charity which trains, upskills and empowers present and […]

Double winner

Jenna Armstrong has done it again. Last year she was part of the winning Cambridge women’s rowing team and her team did it again last weekend. Jenna [2020] started rowing in 2011 as an undergraduate, but took five years off from 2015 to 2020 until she picked it up again when she started at Cambridge. She […]

What does extreme weather mean for us?

Three Gates Cambridge Scholars from China, the US and India are taking part in the third episode of the Gates Cambridge podcast, So, now what? which is out today [26th March] as part of the Cambridge Festival’s Festival of Podcasts. The episode, featuring Victoria Herrmann [2015], Songqiao Yao [2014] and Ramit Debnath [2018] and hosted […]