Opening technology up to all

  • April 16, 2015
Opening technology up to all

Pradipta Biswas leads research team looking to help people with physical impairments to access technology.

Researchers led by a Gates Cambridge Scholar have devised a computer control interface which will help people with physical impairments and others who cannot use a mouse or touchscreeen to perform complex computing tasks at speed.

The team of researchers at the Department of Engineering, led by Dr Pradipta Biswas, has developed a computer control interface that uses a combination of eye-gaze tracking and other inputs. The team’s research was recently published in a paper, ‘Multimodal Intelligent Eye-Gaze Tracking System,’ in the International Journal of Human-Computer Interaction.

The researchers provided two major enhancements to a standalone gaze-tracking system. First, sophisticated software interprets factors such as velocity, acceleration and bearing to provide a prediction of the user’s intended target. Next, a second mode of input is employed, such as a joystick.

“We hope that our eye-gaze tracking system can be used as an assistive technology for people with severe mobility impairment,” said Pradipta, a Senior Research Associate in the Department’s Engineering Design Group. “We are also exploring the potential applications in military aviation and automotive environments where operators’ hands are engaged with controlling an aircraft or vehicle.”

One challenge that arises when designing such a system is, once the target is selected, how does the user indicate a desire for selection? On a typical personal computer, this is accomplished with a click of the mouse; with a phone or tablet, a tap on the screen.

Basic eye-gaze tracking systems often use a signal such as blinking the eyes to indicate this choice. However, blinking is not often ideal. For example, in combat situations, pilots’ eyes might dry up, precluding their ability to blink at the right time.

Pradipta’s team experimented with several ways to solve the selection problem, including manipulating joystick axes, enlarging predicted targets, and using a spoken keyword such as ‘fire’ to indicate a target.

Unsurprisingly, they found that a mouse remains the fastest and least-cognitively stressful method of selecting a target – possibly assisted by the fact that most computer users are already comfortable with this technique. But, a multimodal approach combining eye-gaze tracking, predictive modelling, and a joystick can almost match a mouse in terms of accuracy and cognitive load. Further, when testing computer novices and with sufficient training in the system, the intelligent multimodal approach can even be faster.

The hope is that these revelations will lead to systems that perform as well – or better – than a mouse. “I am very excited for the prospects of this research,” Pradipta said. “When clicking a mouse isn’t possible for everyone, we need something else that’s just as good.”

Latest News

Gates Cambridge Trust seeks new Provost

The Gates Cambridge Trust is seeking to appoint a Provost following the successful tenure of Professor Barry Everitt. The position of the Provost is held for five years in the first instance. The person appointed to the role would be expected to take up the position on 1 October 2022. The role The Provost is […]

Understanding developmental disorders through neuroimaging

Will Snyder’s research is focused on understanding what brain scans can tell us about developmental disorders. His PhD, which he began in 2021, centres on the study of brain development through graph theory analyses of brain folding and brain networks. His aim is to contribute to the growing field of precision medicine, advancing treatments for […]

Making offices safer and more efficient

A new white paper, co-authored by a Gates Cambridge Scholar, has been published which aims to improve the safety and efficiency of office buildings – a key issue during the pandemic. The paper,  A Virtual Reality-Based Digital Twin of workspaces, was published in January in collaboration with British Telecom and was co-authored by Pradipta Biswas, Assistant […]

Scholar heads to Winter Olympics

A Gates Cambridge Scholar is heading for Beijing where he will coach the Australian mixed doubles curling team in the Winter Olympics. The Australian Olympic Committee announced their selection of Tahli Gill and Dean Hewitt for the mixed doubles curling event at the Winter Olympics over the weekend, and Pete Manasantivongs as their coach. The […]