Turning up the noise on gene expression

  • March 9, 2012
Turning up the noise on gene expression

A new paper discusses the latest scientific thinking on gene expression and regulation.

Why do some people develop diseases when they carry a particular gene while others don’t? Increasing evidence indicates the answer partly lies in the variable nature of gene expression which makes all of our cells unique despite sharing the same genomic information. A new paper co-authored by a Gates Cambridge scholar seeks to clarify the latest scientific thinking on gene expression and regulation.

The paper, Interplay between gene expression noise and regulatory network architecture, is published in Trends in Genetics. Lead author is Guilhem Chalancon [2011], who is doing in PhD in Molecular Biology with the support of a Gates Cambridge scholarship.

The article discusses the interplay between gene expression noise and gene regulatory network at different levels of organisation, ranging from a single regulatory interaction to entire regulatory networks. It also considers how this interplay impacts a variety of phenomena, such as pathogenicity, disease, adaptation to changing environments, differential cell-fate outcome and incomplete or partial penetrance effects. In addition, it highlights recent technological developments that permit measurements at the single-cell level and discusses directions for future research.

Earlier this week, Guilhem also had an article commenting on the two recent studies investigating the adaptation of the bacterium Bacillus subtilis to environmental stresses, all published in the prestigious Science journal.

Guilhem says: “These articles do not present the results of my own research, but aim at providing new insights and integrate emerging concepts on the way cells deal with the complex regulation of gene expression.”  

Guilhem’s research involves studying the role that variability of gene expression plays in cell regulation. The goal of his PhD is to understand the molecular features underlying the constraints of gene expression variability. Through doing this, he says, he hopes to find out what benefits cell survival and how the expression of genes can be regularised through the development of appropriate drugs.

Picture credit: dream designs and www.freedigitalphotos.net

Latest News

Affecting change for the Māori community

Self-determination lies at the centre of Māori culture. “It’s a way of life,” says Chris Tooley. That idea is also at the heart of his PhD studies at Cambridge and his subsequent work in Parliament and in the community. Chris grew up with a strong sense of being part of the Māori community. He has ancestral […]

On the COVID frontline

Three Gates Cambridge scholars who have been on the medical frontline during the COVID-19 pandemic will be speaking about their experiences at a virtual event next weekend. The event, organised by the Gates Cambridge Alumni Association, will be moderated by Elizabeth Dzeng, Assistant Professor of Medicine at the University of California, San Francisco in the […]

New game tackles Covid conspiracies

A new online game that puts players in the shoes of a purveyor of fake pandemic news is the latest tactic in the UK Government’s efforts to tackle the deluge of coronavirus misinformation that is misleading many and costing lives across the world. Launched to the public today, the Go Viral! game has been developed by the […]

“Democracy does not work on a ‘trust me’ basis”

When Jennifer Gibson started her MPhil at Cambridge in 2001 as part of the inaugural class of Gates Scholars, no-one knew what it meant to be a Gates Cambridge Scholar. Twenty years later, Jennifer is now a human rights lawyer focused on national security issues, something she never could have anticipated, but which she credits in no small part […]