Turning up the noise on gene expression

  • March 9, 2012
Turning up the noise on gene expression

A new paper discusses the latest scientific thinking on gene expression and regulation.

Why do some people develop diseases when they carry a particular gene while others don’t? Increasing evidence indicates the answer partly lies in the variable nature of gene expression which makes all of our cells unique despite sharing the same genomic information. A new paper co-authored by a Gates Cambridge scholar seeks to clarify the latest scientific thinking on gene expression and regulation.

The paper, Interplay between gene expression noise and regulatory network architecture, is published in Trends in Genetics. Lead author is Guilhem Chalancon [2011], who is doing in PhD in Molecular Biology with the support of a Gates Cambridge scholarship.

The article discusses the interplay between gene expression noise and gene regulatory network at different levels of organisation, ranging from a single regulatory interaction to entire regulatory networks. It also considers how this interplay impacts a variety of phenomena, such as pathogenicity, disease, adaptation to changing environments, differential cell-fate outcome and incomplete or partial penetrance effects. In addition, it highlights recent technological developments that permit measurements at the single-cell level and discusses directions for future research.

Earlier this week, Guilhem also had an article commenting on the two recent studies investigating the adaptation of the bacterium Bacillus subtilis to environmental stresses, all published in the prestigious Science journal.

Guilhem says: “These articles do not present the results of my own research, but aim at providing new insights and integrate emerging concepts on the way cells deal with the complex regulation of gene expression.”  

Guilhem’s research involves studying the role that variability of gene expression plays in cell regulation. The goal of his PhD is to understand the molecular features underlying the constraints of gene expression variability. Through doing this, he says, he hopes to find out what benefits cell survival and how the expression of genes can be regularised through the development of appropriate drugs.

Picture credit: dream designs and www.freedigitalphotos.net

Latest News

Climate change: the world’s greatest challenge

Three Gates Cambridge alumnae took part in the first of a series of online panels to celebrate the scholarship programme’s 20th anniversary. The panel discussion, Climate change: the world’s greatest challenge, took place on the day that the Gates Cambridge Class of 2021 was officially announced. The panel was introduced and hosted by Professor Stephen […]

Class of 2021 announced

The Gates Cambridge Class of 2021 made up of 74 outstanding new scholars has been officially announced. The Gates Cambridge scholarship programme, which this year celebrates its 20th anniversary, is the University of Cambridge’s leading international postgraduate scholarship programme. It was established through a US$210 million donation to the University of Cambridge from the Bill […]

Serotonin and its role in emotional responses

Two new studies which shed light on the role of serotonin in emotional responses have been published in leading journals. Jonathan Kanen [2015] is lead author of both. The first is published in Translational Psychiatry and looked at the influence of the neurotransmitter serotonin on emotional reactions to social conflict. The study involved volunteers drawing […]

Scholar wins NASA Fellowship

A Gates Cambridge Scholar has won a prestigious NASA Fellowship to continue his studies on exoplanets. Luis Welbanks has been awarded a NASA Hubble Fellowship and will begin his programme in the autumn at Arizona State University. The Fellowship programme “enables outstanding postdoctoral scientists to pursue independent research in any area of NASA Astrophysics, using […]