Understanding cancerous mutations

  • November 4, 2013
Understanding cancerous mutations

Dr Anand Jeyasekharan's research uncovers the mechanism underlying the development of cancer in people with mutations in a ‘caretaker’ protein.

New research has uncovered the mechanism underlying the development of cancer in people with mutations in a ‘caretaker’ protein.

Gates Cambridge Alumnus Dr Anand Jeyasekharan’s research is published in the journal Nature Structural and Molecular Biology.

Dr Jeyasekharan’s research is linked to studies he did during his post-doctoral fellowship in Professor Ashok Venkitaraman’s laboratory at the Medical Research Council Cancer Unit at the University of Cambridge.

The tumour suppressor protein BRCA2 protects cells from becoming malignant by promoting an error-free form of DNA repair in the nucleus. Mutations in BRCA2 lead to the accumulation of DNA damage over decades, and thus to the development of cancer. Dr Jeyasekharan’s paper reveals the mechanism underlying the mislocalisation of BRCA2 that contains cancer-associated point mutations. The research provides insight into the cellular machinery involved in repair and maintenance of our genetic information, a process that is impaired in most epithelial cancers.  

Dr Jeyasekharan [2004], who did a PhD in Oncology, is currently a Fellow in Medical Oncology at the National University Hospital, Singapore and a Principal Associate at the Cancer Science Institute. He said: “Mutations in the BRCA2 tumour suppressor result in defective DNA repair, but the mechanism by which this occurs is poorly understood. This paper describes the existence of hidden nuclear export signals within BRCA2 and its cargo protein RAD51, which are normally masked. We show that a subset of cancer-causing mutations cause an ‘unmasking’ of this signal, resulting in the export of the BRCA2 and RAD51 proteins into the cytoplasm, and thereby decreasing their availability for error-free DNA repair.”

His current work at the Cancer Science Institute aims to build on this discovery, testing for unique defects in protein localisation within tumour samples to refine the selection of patients for therapy targeting DNA repair in cancer.

Picture credit: dream designs and www.freedigitalphotos.net.

Latest News

$75,000 grant for technology to assist people with disabilities

A Gates Cambridge Scholar and his colleague have been awarded a prestigious grant from Facebook Reality Labs to Dr Pradipta Biswas and Professor Yogesh Simmhan have been awarded a $75,000 grant from Facebook Reality Labs for their proposal on ‘privacy-respecting augmented reality[AR]/virtual reality[VR] to enable differently abled people in multi-cultural societies. The grant was the […]

Gut bacteria links to immune responses in the brain

Bugs in the gut may hold the key to protective immune measures in the brain which could have implications for diseases such as Parkinson’s and multiple sclerosis, according to a new study led by Gates Cambridge Scholar Zachary Fitzpatrick. A paper based on his PhD research has recently been published in Nature and it highlights […]

Exploring the social barriers to take-up of green technology

How can rural communities be encouraged to take up green energy solutions? A new study co-authored by Gates Cambridge Scholar Ramit Debnath investigates the social barriers to uptake of household appliances fuelled by green energy. Based on research on more than 14.5K households in rural communities in Rwanda, the study, published in Renewable Energy, found […]

A new technique to decode the way the nervous system works

How do the billions of neurons in the human brain work together to give rise to thought or certain types of behaviour? A new study led by Gates Cambridge Alumnus Eviatar Yemini [2007] outlines a colouring technique, known as NeuroPAL (a Neuronal Polychromatic Atlas of Landmarks), which makes it possible – at least in experiments […]