Understanding cancerous mutations

  • November 4, 2013
Understanding cancerous mutations

Dr Anand Jeyasekharan's research uncovers the mechanism underlying the development of cancer in people with mutations in a ‘caretaker’ protein.

New research has uncovered the mechanism underlying the development of cancer in people with mutations in a ‘caretaker’ protein.

Gates Cambridge Alumnus Dr Anand Jeyasekharan’s research is published in the journal Nature Structural and Molecular Biology.

Dr Jeyasekharan’s research is linked to studies he did during his post-doctoral fellowship in Professor Ashok Venkitaraman’s laboratory at the Medical Research Council Cancer Unit at the University of Cambridge.

The tumour suppressor protein BRCA2 protects cells from becoming malignant by promoting an error-free form of DNA repair in the nucleus. Mutations in BRCA2 lead to the accumulation of DNA damage over decades, and thus to the development of cancer. Dr Jeyasekharan’s paper reveals the mechanism underlying the mislocalisation of BRCA2 that contains cancer-associated point mutations. The research provides insight into the cellular machinery involved in repair and maintenance of our genetic information, a process that is impaired in most epithelial cancers.  

Dr Jeyasekharan [2004], who did a PhD in Oncology, is currently a Fellow in Medical Oncology at the National University Hospital, Singapore and a Principal Associate at the Cancer Science Institute. He said: “Mutations in the BRCA2 tumour suppressor result in defective DNA repair, but the mechanism by which this occurs is poorly understood. This paper describes the existence of hidden nuclear export signals within BRCA2 and its cargo protein RAD51, which are normally masked. We show that a subset of cancer-causing mutations cause an ‘unmasking’ of this signal, resulting in the export of the BRCA2 and RAD51 proteins into the cytoplasm, and thereby decreasing their availability for error-free DNA repair.”

His current work at the Cancer Science Institute aims to build on this discovery, testing for unique defects in protein localisation within tumour samples to refine the selection of patients for therapy targeting DNA repair in cancer.

Picture credit: dream designs and www.freedigitalphotos.net.

Latest News

A changing man

The world has always been in flux, but the last decades, particularly the recent one, have been ones of rapid, often violent, transformation on many fronts. For Jaya Savige [2008] the last 11 years since leaving Cambridge have been characterised by profound change on both the personal and professional front. He has captured all of that […]

Second series of Gates Cambridge podcast coming

It’s a new academic year and Gates Cambridge is working on the second series of its So, now what? podcast taking into account feedback over the summer on our first one. The new series, which will launch in January for our 25th anniversary year, will once again be hosted by international journalist Catherine Galloway and […]

Upskilling the world in digital skills for the future

A computer science education company founded by a Gates Cambridge Scholar has gone from strength to strength, partnering with universities across the world and earning plaudits from a UK minister for its work in driving up digital skills. HyperionDev was founded by Riaz Moola as an online coding bootcamp based in South Africa. It has […]

Rob Henderson to speak at Gates Cambridge event

Gates Cambridge Scholar Rob Henderson will be speaking about his best-selling memoir Troubled: A Memoir of Foster Care, Family, and Social Class at an event at Bill Gates Sr. House next Friday [4th October]. The book, published by Simon & Schuster, tells of Rob’s journey from foster care to the military to academia and explores […]